

The Atmospheric Chemistry Experiment (ACE):

After Four Years In-orbit

Kaley Walker^{1,2}, Chris Boone², Peter Bernath^{2,3}, Tom McElroy^{1,4}, Sean McLeod², Ryan Hughes² and the ACE Science and Validation Teams ¹Physics, University of Toronto, ²Chemistry, University of Waterloo, ³Chemistry, University of York (UK), ⁴Environment Canada

Aura Science Team Meeting - 2 October 2007

SCISAT-1

Goal: to investigate chemical and dynamical processes that control the distribution of ozone in stratosphere and upper troposphere

Size: 1.12 m dia. x 1 m

Total mass: 152 kg

Total power: 70 W

(from single solar panel)

Launch date: August 12, 2003

Launch vehicle: Pegasus XL

(provided by NASA)

Orbit: 74° inclined circular orbit at

650 km

ACE Mission Status

- Just started 5th year in orbit designed for 2 year lifetime
- Since launch, satellite and instrument operations nominal
 - Both instruments have been acquiring as much data as possible ∼16,700 occultations recorded since January 2004
 - On 1 May 2007, SCISAT-1 completed its 20,000th orbit of the Earth!
- Currently, the only dedicated solar occultation mission in orbit
 - SCIAMACHY on ENVISAT does some occultation
- Extension of ACE mission approved through to end of IPY
 - Until end of March 2009

ACE Data Products

- ACE-FTS profiles (version $2.2 + O_3$, N_2O_5 & HDO updates):
 - Baseline: O₃, H₂O, CH₄, N₂O, NO₂, NO, HNO₃, HCl, HF, CO, CFC-11, CFC-12, N₂O₅, ClONO₂, temperature and pressure from CO₂ lines
 - Other routine: COF₂, CHF₂Cl, CF₄, CH₃Cl, C₂H₆, SF₆, OCS,
 HCN, HDO
 - Research: CCl₄, HOCl, H₂O₂, HO₂NO₂, CCl₂FCClF₂,
 CH₃CClF₂, ClO, C₂H₂, N₂ and additional isotopologues
- MAESTRO profiles (version 1.2):
 - O₃, NO₂, and optical depth (available very soon!)
- IMAGERS profiles (version 2.2):
 - Atmospheric extinction at 0.5 and 1.02 microns

Residual Aerosol Extinction

New Product!

- Aerosol optical depth obtained by subtracting molecular signal from fit
- Uncorrected residual from H₂O and O₂ (A, B, and gamma bands)

T. McElroy and the MAESTRO team

ozonesondes

Ozone Comparisons

Agreement: ACE-FTS +5%; ACE-MAESTRO ±5%

Mean calculated as (ACE-comp)/average:

Solid red: SR; Dashed blue: SS; Dot-Dash black: both SR/SS

E. Dupuy and J. Kar

Distribution of Phosgene (COCl₂)

- COCl₂ is product of chlorocarbon decomposition
- Previously studied by aircraft (5 - 12 km) and MkIV FTIR on balloons
- First global picture

D. Fu et al., GRL, 34, L17815 (2007)

New Tropospheric FTS Species

• Retrievals from profile taken in young biomass burning plume near East Coast of Tanzania (6.95 S, 39.42 E, 8 October 2005)

Spectral residuals without, with

P.-F. Coheur et al., ACPD, 7, 7907-7932 (2007)

Species Isolation in Asian Monsoon

- ACE-FTS profiles from June-August 2004-2006
- Inside/ouside identified using CO threshold where it is >60 ppbv at 16.5 km
- Inside see enhancement of tropospheric species with maximum near ~15 km

M. Park *et al.*, ACPD, 7, 1–22 (2007)

Summary

- ACE-FTS and ACE-MAESTRO data being used for scientific studies from tropsphere to mesosphere
 - Reprints available from http://www.ace.uwaterloo.ca
- Validation of v2.2 (plus updates) for ACE-FTS and ACE-IMAGERS and v1.2 for MAESTRO is being completed
 - Focusing on O₃, H₂O, CH₄, N₂O, NO₂, NO, HNO₃, HCl, HF,
 CO, CFC-11, CFC-12, N₂O₅, ClONO₂, temperature,
 atmospheric extinction
 - Public release of the current ACE data products is planned for the end of 2007

Acknowledgement

Funding for ACE provided by:

- Canadian Space Agency (CSA)
- Natural Sciences and Engineering Research Council of Canada (NSERC)

Working with ACE data

If you are interested in using ACE data...

• Please let me know - we welcome collaborations:

kwalker@atmosp.physics.utoronto.ca

- Current versions are being kept up to date at the AVDC
- Public data release of ACE-FTS, ACE-MAESTRO, and ACE-IMAGER data products, is expected near the end of the year

https://www.ace.uwaterloo.ca/